skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zeng, Belinda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Knowledge Distillation (KD) (Hinton et al., 2015) is one of the most effective approaches for deploying large-scale pre-trained language models in low-latency environments by transferring the knowledge contained in the largescale models to smaller student models. Previous KD approaches use the soft labels and intermediate activations generated by the teacher to transfer knowledge to the student model parameters alone. In this paper, we show that having access to non-parametric memory in the form of a knowledge base with the teacher’s soft labels and predictions can further enhance student capacity and improve generalization. To enable the student to retrieve from the knowledge base effectively, we propose a new Retrieval-augmented KD framework with a loss function that aligns the relational knowledge in teacher and student embedding spaces. We show through extensive experiments that our retrieval mechanism can achieve state-of-the-art performance for taskspecific knowledge distillation on the GLUE benchmark (Wang et al., 2018a). 
    more » « less